Bayesian inference with rescaled Gaussian process priors

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference with rescaled Gaussian process priors

Abstract: We use rescaled Gaussian processes as prior models for functional parameters in nonparametric statistical models. We show how the rate of contraction of the posterior distributions depends on the scaling factor. In particular, we exhibit rescaled Gaussian process priors yielding posteriors that contract around the true parameter at optimal convergence rates. To derive our results we e...

متن کامل

Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors

It is well known in the statistics literature that augmenting binary and polychotomous response models with gaussian latent variables enables exact Bayesian analysis viaGibbs sampling from the parameter posterior. By adopting such a data augmentation strategy, dispensing with priors over regression coefficients in favor of gaussian process (GP) priors over functions, and employing variational a...

متن کامل

Fast Bayesian Inference for Gaussian Process Models

In many engineering and science disciplines, deterministic computer models or codes are used to simulate complex physical processes. The computer code mathematically describes the relationship between several input variables and one or more output variables. Often the computer models in question can be computationally demanding. Thus, direct evaluation of the code for optimization or validation...

متن کامل

Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior

In Bayesian nonparametric models, Gaussian processes provide a popular prior choice for regression function estimation. Existing literature on the theoretical investigation of the resulting posterior distribution almost exclusively assume a fixed design for covariates. The only random design result we are aware of (van der Vaart and van Zanten, 2011) assumes the assigned Gaussian process to be ...

متن کامل

Priors in quantum Bayesian inference

In quantum Bayesian inference problems, any conclusions drawn from a finite number of measurements depend not only on the outcomes of the measurements but also on a prior. Here we show that, in general, the prior remains important even in the limit of an infinite number of measurements. We illustrate this point with several examples where two priors lead to very different conclusions given the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2007

ISSN: 1935-7524

DOI: 10.1214/07-ejs098